Contents

Chapter 1

1. General Introduction
 1.1 Role of hydrogen and oxygen in silicon technology 1
 1.2 Basic reaction types in abstraction reaction on surfaces
 1.2.1 Langmuir-Hinshelwood mechanism 3
 1.2.2 Eley-Rideal mechanism 3
 1.2.3 Hot-atom mechanism 4
 1.3 Hydrogen reaction on Si surfaces
 1.3.1 H/Si surface structures
 1.3.1.1 Si(100):H 6
 1.3.1.2 Si(111):H 9
 1.3.2 H reaction with adsorbed hydrogen on Si surfaces
 1.3.2.1 Hot-complex mediated ABS 10
 1.4 Background of oxygen-silicon surface reaction 14
 1.5 Outline of this thesis 16

References 18

Chapter 2

2. Experimental methods for H-Si surface interactions
 2.1 Introduction 21
 2.2 Experimental setup
 2.2.1 UHV reaction chamber 22
 2.2.2 Beam chamber 23
2.3 Achieving ultra-high vacuum
2.4 Plasma generation
2.5 Si surface preparation
2.6 Control of surface temperature
2.7 Data acquisition system
2.8 Recipes for TPD and uptake experiments
 2.8.1 Temperature-programmed-desorption (TPD)
 2.8.2 Uptake curve

References

Chapter 3

3. D₂ desorption induced by H adsorption on the Si(100) surface

3.1 Introduction
3.2 Experiment
3.3 Results and discussion
 3.3.1 Uptake of di-deuterides
 3.3.2 Response to the modulated beam
 3.3.3 AID on the 3×1 phase
 3.3.4 Model of the AID mechanism
3.4 Summary

References

Chapter 4

4. Isotope effect on H and D co-adsorption on Si surfaces

4.1 Introduction
4.2 Experiment
4.3 Results and discussion
4.4 Summary
Chapter 5

5. Atomic oxygen on D/Si(111) surface

5.1 Introduction
5.2 Experiment
5.3 Results and discussion
5.4 Summary

References

Chapter 6

6. Conclusion

Appendix

Acknowledgement